77 research outputs found

    Thromboxane A2-Induced Inhibition of Voltage-Gated K+ Channels and Pulmonary Vasoconstriction

    Get PDF
    8 pages, 6 figures.Voltage-gated K+ channels (KV) and thromboxane A2 (TXA2) play critical roles in controlling pulmonary arterial tone under physiological and pathological conditions. We hypothesized that TXA2 might inhibit KV channels, thereby establishing a link between these two major pathogenic pathways in pulmonary hypertension. The TXA2 analogue U46619 inhibited IK(V) (Emax=56.1±3.9%, EC50=0.054±0.019 µmol/L) and depolarized pulmonary artery smooth muscle cells via activation of TP receptors. In isolated pulmonary arteries, U46619 simultaneously increased intracellular Ca2+ concentration and contractile force, and these effects were inhibited by nifedipine or KCl (60 mmol/L). U46619-induced contractions were not altered by the inhibitors of tyrosine kinase genistein or Rho kinase Y-27632 but were prevented by the nonselective protein kinase C (PKC) inhibitors staurosporine and calphostin C. Furthermore, these responses were sensitive to Gö-6983 but insensitive to bisindolylmaleimide I and Gö-6976. Based on the specificity of these drugs, we suggested a role for an atypical PKC in U46619-induced effects. Thus, treatment with a PKC{zeta} pseudosubstrate inhibitor markedly prevented the vasoconstriction, the inhibition of IK(V), and the depolarization induced by U46619. Western blots showed a transient translocation of PKC{zeta} from the cytosolic to the particulate fraction on stimulation with U46619. These results indicate that TXA2 inhibits IK(V), leading to depolarization, activation of L-type Ca2+ channels, and vasoconstriction of rat pulmonary arteries. We propose PKC{zeta} as a link between TP receptor activation and KV channel inhibition.This work was supported by grants from the Comisión Interministerial de Ciencia y Tecnología (SAF 2002/02304) and Comunidad Autónoma de Madrid (08.4/0036.2001 and 08.3/0008/2001). A.C. and L.M. are supported by grants from Red Temática de Investigación Cardiovascular and Ministerio de Educación Cultura y Deporte, respectively.Peer reviewe

    Pulmonary arterial dysfunction in insulin resistant obese Zucker rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insulin resistance and obesity are strongly associated with systemic cardiovascular diseases. Recent reports have also suggested a link between insulin resistance with pulmonary arterial hypertension. The aim of this study was to analyze pulmonary vascular function in the insulin resistant obese Zucker rat.</p> <p>Methods</p> <p>Large and small pulmonary arteries from obese Zucker rat and their lean counterparts were mounted for isometric tension recording. mRNA and protein expression was measured by RT-PCR or Western blot, respectively. K<sub>V </sub>currents were recorded in isolated pulmonary artery smooth muscle cells using the patch clamp technique.</p> <p>Results</p> <p>Right ventricular wall thickness was similar in obese and lean Zucker rats. Lung BMPR2, K<sub>V</sub>1.5 and 5-HT<sub>2A </sub>receptor mRNA and protein expression and K<sub>V </sub>current density were also similar in the two rat strains. In conductance and resistance pulmonary arteries, the similar relaxant responses to acetylcholine and nitroprusside and unchanged lung eNOS expression revealed a preserved endothelial function. However, in resistance (but not in conductance) pulmonary arteries from obese rats a reduced response to several vasoconstrictor agents (hypoxia, phenylephrine and 5-HT) was observed. The hyporesponsiveness to vasoconstrictors was reversed by L-NAME and prevented by the iNOS inhibitor 1400W.</p> <p>Conclusions</p> <p>In contrast to rat models of type 1 diabetes or other mice models of insulin resistance, the obese Zucker rats did not show any of the characteristic features of pulmonary hypertension but rather a reduced vasoconstrictor response which could be prevented by inhibition of iNOS.</p

    Guinea Pig Oxygen-Sensing and Carotid Body Functional Properties

    Get PDF
    Mammals have developed different mechanisms to maintain oxygen supply to cells in response to hypoxia. One of those mechanisms, the carotid body (CB) chemoreceptors, is able to detect physiological hypoxia and generate homeostatic reflex responses, mainly ventilatory and cardiovascular. It has been reported that guinea pigs, originally from the Andes, have a reduced ventilatory response to hypoxia compared to other mammals, implying that CB are not completely functional, which has been related to genetically/epigenetically determined poor hypoxia-driven CB reflex. This study was performed to check the guinea pig CB response to hypoxia compared to the well-known rat hypoxic response. These experiments have explored ventilatory parameters breathing different gases mixtures, cardiovascular responses to acute hypoxia, in vitro CB response to hypoxia and other stimuli and isolated guinea pig chemoreceptor cells properties. Our findings show that guinea pigs are hypotensive and have lower arterial pO2 than rats, probably related to a low sympathetic tone and high hemoglobin affinity. Those characteristics could represent a higher tolerance to hypoxic environment than other rodents. We also find that although CB are hypo-functional not showing chronic hypoxia sensitization, a small percentage of isolated carotid body chemoreceptor cells contain tyrosine hydroxylase enzyme and voltage-dependent K+ currents and therefore can be depolarized. However hypoxia does not modify intracellular Ca2+ levels or catecholamine secretion. Guinea pigs are able to hyperventilate only in response to intense acute hypoxic stimulus, but hypercapnic response is similar to rats. Whether other brain areas are also activated by hypoxia in guinea pigs remains to be studied

    Impact of a TAK-1 inhibitor as a single or as an add-on therapy to riociguat on the metabolic reprograming and pulmonary hypertension in the SUGEN5416/hypoxia rat model.

    Get PDF
    Background: Despite increasing evidence suggesting that pulmonary arterial hypertension (PAH) is a complex disease involving vasoconstriction, thrombosis, inflammation, metabolic dysregulation and vascular proliferation, all the drugs approved for PAH mainly act as vasodilating agents. Since excessive TGF-β signaling is believed to be a critical factor in pulmonary vascular remodeling, we hypothesized that blocking TGFβ-activated kinase 1 (TAK-1), alone or in combination with a vasodilator therapy (i.e., riociguat) could achieve a greater therapeutic benefit. Methods: PAH was induced in male Wistar rats by a single injection of the VEGF receptor antagonist SU5416 (20 mg/kg) followed by exposure to hypoxia (10%O2) for 21 days. Two weeks after SU5416 administration, vehicle, riociguat (3 mg/kg/day), the TAK-1 inhibitor 5Z-7-oxozeaenol (OXO, 3 mg/kg/day), or both drugs combined were administered for 7 days. Metabolic profiling of right ventricle (RV), lung tissues and PA smooth muscle cells (PASMCs) extracts were performed by magnetic resonance spectroscopy, and the differences between groups analyzed by multivariate statistical methods. Results: In vitro, riociguat induced potent vasodilator effects in isolated pulmonary arteries (PA) with negligible antiproliferative effects and metabolic changes in PASMCs. In contrast, 5Z-7-oxozeaenol effectively inhibited the proliferation of PASMCs characterized by a broad metabolic reprogramming but had no acute vasodilator effects. In vivo, treatment with riociguat partially reduced the increase in pulmonary arterial pressure (PAP), RV hypertrophy (RVH), and pulmonary vascular remodeling, attenuated the dysregulation of inosine, glucose, creatine and phosphocholine (PC) in RV and fully abolished the increase in lung IL-1β expression. By contrast, 5Z-7-oxozeaenol significantly reduced pulmonary vascular remodeling and attenuated the metabolic shifts of glucose and PC in RV but had no effects on PAP or RVH. Importantly, combined therapy had an additive effect on pulmonary vascular remodeling and induced a significant metabolic effect over taurine, amino acids, glycolysis, and TCA cycle metabolism via glycine-serine-threonine metabolism. However, it did not improve the effects induced by riociguat alone on pulmonary pressure or RV remodeling. None of the treatments attenuated pulmonary endothelial dysfunction and hyperresponsiveness to serotonin in isolated PA. Conclusion: Our results suggest that inhibition of TAK-1 induces antiproliferative effects and its addition to short-term vasodilator therapy enhances the beneficial effects on pulmonary vascular remodeling and RV metabolic reprogramming in experimental PAH.This work was supported by the Instituto de Salud Carlos III-ISCIII (Grant numbers: PI15/01100 and PI19/01616 to LM), the Spanish Ministry of Science and Innovation MCIN (Grant numbers: PID 2019-107363RB-I00 to FP-V, PID 2020-117939RBI00 to AC and PID 2021-123238OB-I00, PDC 2021-121696-I00 to JRC and PID2019-106564RJ-I00 to JI-G), the Comunidad de Madrid-CAM (CM S2017/BMD-3727 to AC and LM and B2017/ BMD3875 to JI-G) and, as appropriate, by “ERDF A way of making Europe”, co-funded by the “European Union”. FP-V received funding from Fundación Contra la Hipertensión Pulmonar (Empathy grant) and JR-C from La Caixa Foundation (Health Research Call 2020: HR20-00075). This work was performed under the Maria de Maeztu Units of Excellence Programme–Grant MDM-2017-0720 funded by MCIN/AEI/10.13039/501100011033.S

    Oxygen-sensitivity and Pulmonary Selectivity of Vasodilators as Potential Drugs for Pulmonary Hypertension

    Get PDF
    Current approved therapies for pulmonary hypertension (PH) aim to restore the balance between endothelial mediators in the pulmonary circulation. These drugs may exert vasodilator effects on poorly oxygenated vessels. This may lead to the derivation of blood perfusion towards low ventilated alveoli, i.e., producing ventilation-perfusion mismatch, with detrimental effects on gas exchange. The aim of this study is to analyze the oxygen-sensitivity in vitro of 25 drugs currently used or potentially useful for PH. Additionally, the study analyses the effectiveness of these vasodilators in the pulmonary vs. the systemic vessels. Vasodilator responses were recorded in pulmonary arteries (PA) and mesenteric arteries (MA) from rats and in human PA in a wire myograph under different oxygen concentrations. None of the studied drugs showed oxygen selectivity, being equally or more effective as vasodilators under conditions of low oxygen as compared to high oxygen levels. The drugs studied showed low pulmonary selectivity, being equally or more effective as vasodilators in systemic than in PA. A similar behavior was observed for the members within each drug family. In conclusion, none of the drugs showed optimal vasodilator profile, which may limit their therapeutic efficacy in PH

    Impact of a TAK-1 inhibitor as a single or as an add-on therapy to riociguat on the metabolic reprograming and pulmonary hypertension in the SUGEN5416/hypoxia rat model

    Get PDF
    Background: Despite increasing evidence suggesting that pulmonary arterial hypertension (PAH) is a complex disease involving vasoconstriction, thrombosis, inflammation, metabolic dysregulation and vascular proliferation, all the drugs approved for PAH mainly act as vasodilating agents. Since excessive TGF-β signaling is believed to be a critical factor in pulmonary vascular remodeling, we hypothesized that blocking TGFβ-activated kinase 1 (TAK-1), alone or in combination with a vasodilator therapy (i.e., riociguat) could achieve a greater therapeutic benefit.Methods: PAH was induced in male Wistar rats by a single injection of the VEGF receptor antagonist SU5416 (20 mg/kg) followed by exposure to hypoxia (10%O2) for 21 days. Two weeks after SU5416 administration, vehicle, riociguat (3 mg/kg/day), the TAK-1 inhibitor 5Z-7-oxozeaenol (OXO, 3 mg/kg/day), or both drugs combined were administered for 7 days. Metabolic profiling of right ventricle (RV), lung tissues and PA smooth muscle cells (PASMCs) extracts were performed by magnetic resonance spectroscopy, and the differences between groups analyzed by multivariate statistical methods.Results:In vitro, riociguat induced potent vasodilator effects in isolated pulmonary arteries (PA) with negligible antiproliferative effects and metabolic changes in PASMCs. In contrast, 5Z-7-oxozeaenol effectively inhibited the proliferation of PASMCs characterized by a broad metabolic reprogramming but had no acute vasodilator effects. In vivo, treatment with riociguat partially reduced the increase in pulmonary arterial pressure (PAP), RV hypertrophy (RVH), and pulmonary vascular remodeling, attenuated the dysregulation of inosine, glucose, creatine and phosphocholine (PC) in RV and fully abolished the increase in lung IL-1β expression. By contrast, 5Z-7-oxozeaenol significantly reduced pulmonary vascular remodeling and attenuated the metabolic shifts of glucose and PC in RV but had no effects on PAP or RVH. Importantly, combined therapy had an additive effect on pulmonary vascular remodeling and induced a significant metabolic effect over taurine, amino acids, glycolysis, and TCA cycle metabolism via glycine-serine-threonine metabolism. However, it did not improve the effects induced by riociguat alone on pulmonary pressure or RV remodeling. None of the treatments attenuated pulmonary endothelial dysfunction and hyperresponsiveness to serotonin in isolated PA.Conclusion: Our results suggest that inhibition of TAK-1 induces antiproliferative effects and its addition to short-term vasodilator therapy enhances the beneficial effects on pulmonary vascular remodeling and RV metabolic reprogramming in experimental PAH

    Intestinal Epithelial Cell-Derived Extracellular Vesicles Modulate Hepatic Injury via the Gut-Liver Axis During Acute Alcohol Injury.

    Get PDF
    Binge drinking, i.e., heavy episodic drinking in a short time, has recently become an alarming societal problem with negative health impact. However, the harmful effects of acute alcohol injury in the gut-liver axis remain elusive. Hence, we focused on the physiological and pathological changes and the underlying mechanisms of experimental binge drinking in the context of the gut-liver axis. Eight-week-old mice with a C57BL/6 background received a single dose (p.o.) of ethanol (EtOH) [6 g/kg b.w.] as a preclinical model of acute alcohol injury. Controls received a single dose of PBS. Mice were sacrificed 8 h later. In parallel, HepaRGs and Caco-2 cells, human cell lines of differentiated hepatocytes and intestinal epithelial cells intestinal epithelial cells (IECs), respectively, were challenged in the presence or absence of EtOH [0-100 mM]. Extracellular vesicles (EVs) isolated by ultracentrifugation from culture media of IECs were added to hepatocyte cell cultures. Increased intestinal permeability, loss of zonula occludens-1 (ZO-1) and MUCIN-2 expression, and alterations in microbiota-increased Lactobacillus and decreased Lachnospiraceae species-were found in the large intestine of mice exposed to EtOH. Increased TUNEL-positive cells, infiltration of CD11b-positive immune cells, pro-inflammatory cytokines (e.g., tlr4, tnf, il1β), and markers of lipid accumulation (Oil Red O, srbep1) were evident in livers of mice exposed to EtOH, particularly in females. In vitro experiments indicated that EVs released by IECs in response to ethanol exerted a deleterious effect on hepatocyte viability and lipid accumulation. Overall, our data identified a novel mechanism responsible for driving hepatic injury in the gut-liver axis, opening novel avenues for therapy.This work was supported by the MINECO Retos SAF2016-78711, SAF2017-87919-R, EXOHEP-CM S2017/BMD-3727, NanoLiver-CM Y2018/NMT-4949, ERAB Ref. EA 18/14, AMMF 2018/117, UCM-25-2019 and COST Action CA17112, the German Research Foundation (SFB/TRR57/P04, SFB 1382-403224013/A02, and DFG NE 2128/2-1). FC and YN are Ramón y Cajal Researchers RYC-2014-15242 and RYC-2015-17438. FC is a Gilead Liver Research 2018. KZ is a recipient of a Chinese Scholarship Council (CSC). BK20170127 from the Natural Science Foundation of Jiangsu Province to JP.S

    HIV transgene expression impairs K+ channel function in the pulmonary vasculature

    Get PDF
    Human immunodeficiency virus (HIV) infection is an established risk factor for pulmonary arterial hypertension (PAH), however the pathogenesis of HIV-related PAH remains unclear. Since K+ channel dysfunction is a common marker in most forms of PAH, our aim was to analyse if the expression of HIV proteins is associated with impairment of K+ channel function in the pulmonary vascular bed. HIV transgenic mice (Tg26) expressing seven of the nine HIV viral proteins and wild type (Wt) mice were used. Hemodynamic assessment was performed by echocardiography and catheterization. Vascular reactivity was studied in endothelium-intact pulmonary arteries (PA). K+ currents were recorded in freshly isolated PA smooth muscle cells (PASMC) using the patch-clamp technique. Gene expression was assessed using RT-PCR. PASMC from Tg26 mice had reduced K+ currents and were more depolarized that those from Wt. While Kv1.5 currents were preserved, pH-sensitive non-inactivating background currents (IKN) were nearly abolished in PASMC from Tg26 mice. Tg26 mice had reduced lung expression of Kv7.1 and Kv7.4 channels and decreased responses to the Kv7.1 channel activator L634,373 assessed by vascular reactivity and patch-clamp experimental approaches. While we found pulmonary vascular remodelling and endothelial dysfunction in Tg26 mice, this was not accompanied by changes in hemodynamic parameters. In conclusion, the expression of HIV proteins in vivo impairs pH-sensitive IKN and Kv7 currents. This negative impact of HIV proteins in K+ channels, was not sufficient to induce PAH, at least in mice, but may play a permissive or accessory role in the pathophysiology of HIV-associated PAH

    Potential long-term effects of SARS-CoV-2 infection on the pulmonary vasculature: Multilayered cross-talks in the setting of coinfections and comorbidities

    Get PDF
    The Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and its sublineages pose a new challenge to healthcare systems worldwide due to its ability to efficiently spread in immunized populations and its resistance to currently available therapies. COVID-19, although targeting primarily the respiratory system, is also now well established that later affects every organ in the body. Most importantly, despite the available therapy and vaccine-elicited protection, the long-term consequences of viral infection in breakthrough and asymptomatic individuals are areas of concern. In the past two years, investigators accumulated evidence on how the virus triggers our immune system and the molecular signals involved in the cross-talk between immune cells and structural cells in the pulmonary vasculature to drive pathological lung complications such as endothelial dysfunction and thrombosis. In the review, we emphasize recent updates on the pathophysiological inflammatory and immune responses associated with SARS-CoV-2 infection and their potential long-term consequences that may consequently lead to the development of pulmonary vascular diseases

    Mitochondrial Na+ controls oxidative phosphorylation and hypoxic redox signalling

    Get PDF
    All metazoans depend on O2 delivery and consumption by the mitochondrial oxidative phosphorylation (OXPHOS) system to produce energy. A decrease in O2 availability (hypoxia) leads to profound metabolic rewiring. In addition, OXPHOS uses O2 to produce reactive oxygen species (ROS) that can drive cell adaptations through redox signalling, but also trigger cell damage1–4, and both phenomena occur in hypoxia4–8. However, the precise mechanism by which acute hypoxia triggers mitochondrial ROS production is still unknown. Ca2+ is one of the best known examples of an ion acting as a second messenger9, yet the role ascribed to Na+ is to serve as a mere mediator of membrane potential and collaborating in ion transport10. Here we show that Na+ acts as a second messenger regulating OXPHOS function and ROS production by modulating fluidity of the inner mitochondrial membrane (IMM). We found that a conformational shift in mitochondrial complex I during acute hypoxia11 drives the acidification of the matrix and solubilization of calcium phosphate precipitates. The concomitant increase in matrix free-Ca2+ activates the mitochondrial Na+/Ca2+ exchanger (NCLX), which imports Na+ into the matrix. Na+ interacts with phospholipids reducing IMM fluidity and mobility of free ubiquinone between complex II and complex III, but not inside supercomplexes. As a consequence, superoxide is produced at complex III, generating a redox signal. Inhibition of mitochondrial Na+ import through NCLX is sufficient to block this pathway, preventing adaptation to hypoxia. These results reveal that Na+ import into the mitochondrial matrix controls OXPHOS function and redox signalling through an unexpected interaction with phospholipids, with profound consequences in cellular metabolism
    corecore